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A two-step physical algorithm that simultaneously retrieves geophysical parameters from Moderate 
Resolution Imaging Spectroradiometer (MODIS) measurements was developed. The retrieved geo- 
physical parameters include atmospheric temperature-humidity profile, surface skin temperature, and 
two surface emissivities within the shortwave (3-5-pm) and the longwave (8-14.5pm) regions. The 
physical retrieval is accomplished in two steps: (i) The Tikhonov regularization method is employed to 
generate a regularization solution along with an optimum regularization parameter; (ii) the nonlinear 
Newtonian iteration algorithm is carried out with the regularization solution as a first-guess profile to 
obtain a final maximum probability solution for geophysical parameters. The algorithm was tested with 
both simulated and real MODIS Airborne Simulator (MAS) data. Sensitivity studies on simulated MAS 
data demonstrate that simultaneous retrievals of land and atmospheric parameters improve the accuracy 
of the retrieved geophysical parameters. Finally, analysis and accuracy of retrievals from real MAS data 
are discussed. 0 2000 Optical Society of America 

OCIS codes: 280.0280, 030.5620. 

1. Introduction 

The Moderate Resolution Imaging Spectroradiom- 
eter (MODIS)1 is a keystone instrument of the Earth 
Observing System (EOS) for global remote sensing of 
atmosphere, land, and ocean properties from space in 
the visible and the infrared regions of the spectrum. 
It was developed as part of the EOS AM-l platform 
(launched in December 1999) for global remote sens- 
ing of geophysical parameters from space. MODIS 
is a scanning spectroradiometer with 36 spectral 
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bands between 0.41 and 14.5 pm. It scans from na- 
dir to +55”, with bands 1-19 and band 26 in the 
visible and the near-infrared range and with the re- 
maining bands in the thermal infrared from the 
3-14.5~km spectral region. Although MODIS is not 
a sounding instrument, these thermal infrared bands 
provide measurements of radiance from the Earth’s 
surface, from clouds, and from atmospheric carbon 
dioxide (CO,), moisture (H,O), and ozone (0,). Thus 
it will be possible to retrieve geophysical parameters 
that include atmospheric temperature and water- 
vapor profiles, surface skin temperature, and land 
surface emissivities (henceforth abbreviated as sur- 
face emissivity) from the MODIS measurements. 
The combination of spectral coverage, high spatial 
resolution (1 km at nadir), and good radiometric sig- 
nal to noise make MODIS particularly capable of 
retrieving medium-scale variability. In support of 
MODIS remote-sensing algorithm development the 
MODIS Airborne Simulator (MAS) was developed. 
MAS has 50 spectral bands with spectral coverage 
from 0.47 to 14.17 km. Of the 50 MAS bands, 19 
have corresponding bands on MODIS. With its 
much higher spectral resolution (50 m versus 250- 
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Table 1. Spectral Characteristics of the MAS Sounding Bands in the 1996 Configuration 

Equivalent Central Spectral 
MAS MODIS Wavelength Resolution NEAT” 
Band Band (w-4 (km) (K) 

30 3.59 0.16 1.21 

31 20 3.74 0.15 0.76 
32 22 3.90 0.17 0.70 
33 23 4.05 0.16 0.54 
34 4.21 0.16 0.58 
35 4.36 0.15 3.22 
36 25 4.52 0.16 1.13 
37 4.67 0.16 0.30 
38 4.82 0.16 0.25 
39 4.97 0.15 0.29 

40 5.12 0.16 0.22 
41 5.28 0.16 0.28 

42 29 8.60 0.44 0.19 
43 30 9.79 0.62 0.26 

44 10.55 0.49 0.11 
45 31 11.02 0.54 0.13 
46 32 11.96 0.45 0.23 
47 12.88 0.46 0.39 
48 33 13.23 0.47 0.50 
49 35 13.72 0.60 1.27 
50 36 14.17 0.42 2.63 

“NEAT for bands 30-50 are based on in-flight measurements over the Gulf of Mexico on 9 April 1996. 
‘A, atmospheric studies; L, land studies; 0, ocean studies. 
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1000 m for MODIS), MAS is able to provide detailed 
small-scale variations of geophysical parameters2 
and assess the scientific capability and usefulness of 
MODIS bands. In the prelaunch phase a MODIS 
atmospheric retrieval algorithm was developed and 
tested with data from MAS.2J MAS, flown on 
NASA’s ER-2 high-altitude (20-km) research aircraft, 
contains spectral sounding bands that will be used in 
the evaluation of a two-step physical retrieval algo- 
rithm presented in this paper. Spectral character- 
istics of these bands and corresponding MODIS 
bands are listed in Table 1. Figure 1 shows the spec- 
tral responses of MAS infrared bands superposed 
with an emission spectrum from the surface and the 
atmosphere computed with a line-by-line radiative 
transfer model (LBLRTM)* for the U.S. standard at- 
mosphere. 

Remote sensing of atmospheric temperature and 
water-vapor profiles from infrared emission bands 
usually requires assumptions about the behavior of 
terrestrial materials. It is usually assumed that the 
surface is a blackbody (emissivity 1.0)5-10 or a gray- 
body (approximately 0.96-0.98)11 for atmospheric 
sounding. In the current Geostationary Opera- 
tional Environmental Satellite (GOES) operational 
retrieval algorithm a sequential method is used to 
deal with the surface emissivity. The sequential 
method first retrieves atmospheric parameters and 
surface skin temperature, using a constant surface 
emissivity of 0.96 for land or 0.98 for water12; then the 
surface emissivity is adjusted by use of the retrieve+ 
temperature- humidity profile and surface skin ter 
perature in the radiative transfer equation (RTl 
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A drawback of this approach is that only a single 
surface emissivity within the longwave region is cal- 
culated, disregarding surface emissivity spectral 
variation. Moreover, sensitivity research on simu- 
lated MAS data has illustrated that separation of the 
surface emissivity retrieval from the atmospheric 
temperature-humidity profile retrieval in the cou- 
pled Earth-atmosphere system would reduce re- 
trieval accuracy compared with that from the 
simultaneous retrieval. The surface emissivity is 
dependent on the surface composition (soil, vegeta- 
tion, snow, wetness, and the like) and geometry (soil 
roughness, geometry of vegetation canopy, topogra- 
phy, and so on). For instance, large variations exist 
between vegetated and nonvegetated surfaces (e.g., 
rock, sand). Surface emissivity also varies within 
the shortwave (3-5-pm) and the longwave wave (8- 
14.5-pm) regions for some terrestrial materials. As 
shown in Fig. 2, the emissivity spectrum of a green 
spruce leaf is roughly constant from 3.5-14.5 pm 
(lower left-hand panel), but the emissivity spectrum 
of sliced sandstone (lower right-hand panel) has a 
large spectral variation. Thus, in cases of spectral 
and spatial surface emissivity variation, accounting 
for this variation will improve the accuracy of re- 
trieved atmospheric profiles. l3 Alternatively, for 
the surface property retrieval in the Earth- 
atmosphere system, the land-surface temperature 
(LST) retrieval requires accurate information of the 
atmospheric temperature and water-vapor distribu- 
tion for the correction of atmospheric influences. Al- 
though the split-window technique, which corrects 
atmospheric influences based on differential absorp- 
tion in adjacent thermal bands, is less sensitive to the 
uncertainties of atmospheric status, this technique 
requires knowledge of surface emissivity to better 
than 0.01 for retrieval of LST to an accuracy of 1 K.14 
Obviously it is difficult to meet this requirement for 
land covers with variable emissivities, especially in 
semiarid and arid areas. Also, a recently developed 

physics-based LST retrieval algorithm15 has demon- 
strated that the accuracy of the LST retrieval de- 
pends largely on accurate atmospheric information. 
These efforts indicate that the accuracy of retrieved 
geophysical parameters from space may be improved 
on by (i) including surface emissivity as a part of the 
solution of the RTE and (ii) retrieving atmospheric 
parameters and surface properties simultaneously. 

In this paper a two-step physical algorithm that 
retrieves atmospheric temperature and water-vapor 
profiles, surface skin temperature, and two surface 
emissivities (in shortwave and long-wave) is investi- 
gated. The linear simultaneous form of RTE, which 
is the basis of the two-step physical algorithm, was 
originally developed by Smith et aZ.“-8 and has been 
successfully applied to radiometric measurements 
from the Television and Infrared Observational Sat- 
ellite (TIROS) Operational Vertical Sounder (TOVS), 
GOES, and high-resolution interferometer sounder 
(HIS).9-11,16-M For example, Huangl6 derived a lin- 
earized RTE with analytical Jacobians of band trans- 
mittances and used Tikhonov regularization with a 
special side constraint on simulated and observed 
high-resolution interferometer sounder data. 
Eyre19>20 proposed a Newtonian iteration algorithm 
that performs a simultaneous retrieval of the tem- 
perature and humidity profiles, the surface skin tem- 
perature, microwave emissivity, and the cloud-top 
pressure and amount from the TOVS data. How- 
ever, in these efforts, a constant surface emissivity 
value was assumed for the infrared shortwave and 
long-wave regions. It is expected that retrieval er- 
rors are increased over nonvegetated surfaces by 
means of ignoring surface emissivity spectral and 
spatial variations. This is supported by the findings 
of Plokhenko and Menzel,l3 who point out that even 
small emissivity variations cause measurable 
changes in infrared radiance and that disregarding 
the spectral and spatial variations of the emissivity 
in the window bands magnifies the errors in the for- 
ward transfer model calculation. Smith et aZ.21 de- 
veloped a physical retrieval algorithm for the 
atmospheric infrared sounder (AIRS) in which sur- 
face emissivity is treated as a retrieval parameter. 
This study follows Smith’s derivation and expands on 
the early GOES physical retrieval development by 
including surface emissivities as a part of the re- 
trieval solution. 

The two-step physical retrieval described in this pa- 
per requires the use of initial temperature and water- 
vapor profiles, surface skin temperature, and two 
surface emissivities. These initial geophysical pa- 
rameters serve as a first guess to constrain the numer- 
ical solution to a physically reasonable results. The 
first-guess parameters are obtained through a statis- 
tical regression analysis technique (see Subsection 
6.A). Then the physical retrieval is accomplished in 
two steps: (i) The Tikhonov regularization method is 
employed to generate a regularization solution that 
updates the first-guess temperature and water-vapor 
profiles, surface skin temperature, and two emissivi- 
ties. Along with the Tikhohov solution, the optimum 
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of the Tikhonov regularization parameter that bal- 
ances the residual norm and the side constraint norm 
(see Subsection 2.C) in the computed solution is also 
obtained. (ii) The Tikhonov regularization solution 
with the optimum regularization parameter is then 
used as an improved first guess in the nonlinear New- 
tonian iteration algorithm. The maximum probabil- 
ity solution for the geophysical parameters is finally 
achieved through the solution of the RTE. The ad- 
vantage of combining the Tikhonov and the Newtonian 
methods is to find, with objectivity, an optimum regu- 
larization parameter that is used as a smooth factor to 
control convergence in the Newtonian retrieval 
method. In addition, the improved guess parameters 
obtained from the first-step result in better retrieval 
performance in the Newtonian retrieval algorithm. 

The two-step physical retrieval was applied in this 
paper to simulated MAS radiances, and a compre- 
hensive error analysis was made. The experimental 
verification is also presented by application of the 
algorithm to real MAS observations by a NASA ER-2 
aircraft over Oklahoma during the Subsonic Con- 
trails and Clouds Effects Special Studies (SUCCESS) 
campaign.22 MAS data is useful for testing the re- 
trieval for MODIS application, because of similarities 
(cross-track scan pattern, spectral bands, radiometric 
performance) between MAS and MODIS.2 Finally 
the discrepancies between the retrieved parameters 
and the cross-chain Loran atmospheric sounding sys- 
tem (CLASS) sounding are discussed. 

2. Methodology 

A. Perturbation Form of the Radiative Transfer Equation 

For a cloud-free atmosphere under local thermody- 
namic equilibrium the RTE15 in the thermal infrared 
region may be expressed as 

where R(v~, p,) is the mean spectral radiance 
measured in a band whose mean effective wave num- 
ber is V~ and the cosine of local zenith angle 8 of 
observation is l.~, B(vj, t,) is the Planck function of the 
surface skin temperature t,, E(VJ, TV,) is the effective 
surface emissivity, and ~(u~, F, p,) is the transmit- 
tance from the surface pressure level p, to the top of 
the atmosphere along the observation angle 0. The 
first term of Eq. (1) represents surface emission to 
space (less atmospheric absorption). R,(vJ, p) is the 
upwelling radiance contributed from atmosphere to 
space. R,(v~, l.~, -k-I, +‘) denotes the atmospheric 
downwelling emissive radiance being reflected by the 
surface upward to space; its incident direction is rep- 
resented by -k’ and 4’ (where the minus sign indi- 
cates that direction is always downward). Note that 
p’ = cos 8’ and that +’ represents the azimuthal 

angle. The final term represents downward solar 
radiance reflected off the surface, where p. is the 
cosine of the solar zenith angle, $. is the relative 
azimuth angle between the viewing direction and the 
solar beam direction, f,(p; -k’, +‘) is the bidirec- 
tional reflectance distribution function. T*(v~, k, 
-ko, O), defined as T(u~, k,ps)~(uj, -ko,ps), is the total 
transmittance for the solar beam. E,(u~) is the spec- 
tral solar irradiance incident on the top of the atmo- 
sphere (norm to the beam). To be practical with use 
of Eq. (1) for geophysical parameter retrieval, the 
following realistic assumptions are held: (a) A hor- 
izontally homogeneous atmospheric condition is as- 
sumed so that the atmospheric downward thermal 
emission is independent of azimuth angle.23 (b) A 
specular reflection model is adopted, so it is reason- 
able to assume that p = b’; consequently, the inte- 
gral of %(y, t-4 -k’, +‘) can be simplified. (c) A 
single bidirectional reflectance distribution function 
anisotropic factor15 can be used for the surface- 
reflected solar beam within the shortwave region, 
and the anisotropic factor (x is defined as follows, 

dxlJ4 --IJo, 40) a= , r 

where r is reflectance of the assumed Lambertian 
surface. As a result of above-mentioned assump- 
tions with the relation r = 1 - E according to Kirch- 
hoff’s law, Eq. (1) can be simplified as follows, 

dP 

Eob, > 
+ [1 - +, t-dbT*(v,, IJ-, -I-‘Jo, o>(-k~> ___ , (2) 

7T 

where T*(u~, k, -P, P> = Tb’j, p, Pshb’j, -p, Psbb’j, 
p, p) is the reflected transmittance from surface to 
the pressure level p. Although there is evidence 
that surface emissivity varies with viewing angle, 
spectral and angular emissivity data are very limit- 
ed.24 In the following derivation, land surfaces are 
assumed to be Lambertian, (i.e., surface emissivity is 
independent of local zenith angle), and the solar con- 
tribution term is not included (reflected solar radi- 
ance correction for daytime observation within the 
shortwave region is discussed in Subsection 6.C). 
Equation (2) may be approximated in the numerical 
perturbation form of 

St,(j) = St, P?(j) + SE(j)lqj) + 5 st(i)Kt(i,j) 
a=1 
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where the perturbation, 6, is with respect to an a 
priori estimated or mean condition; t, is a MAS band 
brightness temperature vector; and Ki*, K’, I?, and Ii’ 
are the weighting functions of surface skin tempera- 
ture (t,), surface emissivity (t), atmospheric temper- 
ature (t), and water vapor (q), respectively. The 
atmospheric quadrature pressure level is indicated 
by i (i = 1, , 2s, from space to surface), j denotes 
band number, and Is is a quadrature level of the 
surface pressure. For simplicity the variable k was 
dropped in the weighting functions. 

Equation (3) can be expressed in its matrix form as 

8y = K&x, (4) 

where 8y = Et, and the weighting function matrix K 
contains K’. K”. P. and P?,17,alzs i.e.. 

1 Et \ 

(5) 

(6) 

The entry KCi, j), of weighting function matrix K, is 
expressed for trmperature RS 

P(Li) = a@+ mllwi) 
i,R(v,, &)/iltB 

For water vapor 

( “In TzL(4j) 
dp(i) 

W). (8) 

For surface skin temperature 

and for surface emissivity 

where TV, IS water-vapor component transmittance; 1, 
and t, are surface air (taken at 2 m above ground) and 
skin temperature, respectively; and ri and - repre- 
sent transmittance of the atmospheric column above 
the Icvel, i, and above the surface, s, respectively, for 
all gases. The symbol il indicates the partial deriv- 
ative with respect to the vertical coordinate. 

B. Solution in the Eigenvector Doman 

4s is well known, Eq. (4) presents an ill-posed prob- 
lem. The inverse solution of Eq. (4) is to solve 83 
unknown parameters that include 40 levels”~ for at- 
mospheric temperature profile, 40 levels for water- 
vapor profile, surface skin temperature, and two 
surface emissivities from the MAS 21 spectral band 
measurements (bands 30-50). Obviously it is an 
undetermined solution. To reduce the uncertainty 
in the solution and increase computational efficiency, 
the profile vector is expanded as a small series of 
eigenvcctors ofthe temperature and water-vapor pro- 
files.27 This reduces the number of unknown coeffi- 
cients to the same order as that of measured 
radiances. In the eigenvcctor domain the perturba- 
tion solution can be written ae 

.,‘I 

,rx=Cf;lJ=vf, (11) 
I 1 

where vz is the ith eigenvector, f‘ is the ith expansion 
coefficients, and M denotes the number of terms. V 
and f represent the eigenvector matrix and the coef- 
ficient vector, respectively. The eigenvectors are de- 
rived from a statistical covariance matrix of a large 
sample of radiosonde temperature and water-vapor 
profiles. The eigenvectors of surface skin tempera- 
ture and emissivities are assumed to be the unit vec- 
tor. Therefore the retrieval problem is reduced to 
finding a set of coefficients that may be applied to 
Eq. (11) with eigenvectors to update the geophysical 
parameters. Since the eigenvector expansion algo- 
rithm provides the most computationally economic 
representation of temperature or water-vapor mix- 
ing ratio, the number of eigcnvectors required for 
extracting all the significant information in the 
MAS radiance is much less than the number of MAS 
radiance bands. Statistical analysis of the MAS ra- 
diance information content reveals that five tempcr- 
ature and three water-vapor eigenvectors explain all 
the MAS radiance variance occurring above the in- 
strument noise level. In the eigenvector domain Eq. 
(4) becomeq 



The sounding retrieval problem has been reduced to 
one of solving for 11 unknowns (5 temperature eig- 
envector coefficients, 3 water-vapor eigenvector coef- 
ficients, surface skin temperature perturbation plus 2 
surface emissivity perturbations). 

C. Tikhonov Regularization 

The ill-posed problem and the solution of Eq. (4) has 
been investigated by many in the literature.zs-34 
The direct inverse of Eq. (4) may not exist; i.e., there 
is no solution, or the solution is unstable. Tikhonov 
regularization28-31 is the most widely used algorithm 
to stabilize the ill-posed problem and to obtain a 
meaningful solution. In our case Tikhonov regula- 
tion involves solving the following problem: 

(13) 

where K = S-l12R, Sy = S-1’2Sy, and S-li2 is the 
inverse of the root of MAS instrument noise matrix. 
The symbol y is a regularization parameter, and L is 
a side constraint matrix. The solution of Eq. (13) is 
given by 

Sf, = Rpy, (14) 

where q is a resolution matrix, 

(15) 

The subscript y indicates that the retrieved expan- 
sion coefficients are dependent on y; different y re- 
sults in different solutions. So the regularization 
parameter y plays an important role in the retrieved 
solution. It balances the residual norm Ill&f - Syll 
and the side constraint norm liLSfll. If y is chosen 
too small, the solution of Eq. (13) is unstable; whereas 
if y is too large, the retrieved solution is close to the 
initial guess profile. It is possible to find an opti- 
mum parameter y that minimizes the total error. 
The objective methods that estimate the optimum y 
can be found in Refs. 35-37. 

D. Newtonian Iteration Algorithm 

After the regularization solution described in Subsec- 
tion 2.C, which updates the original regression guess 
profile along with the optimum parameter y, is ob- 
tained, the nonlinear Newtonian iteration algorithm 
is further applied to the Tikhonov regularization so- 
lution. The iterative solution of Eq. (4) is given by17 

where y, is a smoothing parameter whose initial 
value is set to be the output of the Tikhonov regular- 
ization algorithm. At each iterative step, conver- 
gence tests are carried out. The convergence tests 
include the expansion coefficient convergence test 
and the weighted brightness temperature residual 
test. The purpose of the convergence tests is for 
retrieval quality control. If one of these tests fails, 
then the retrieval is rejected. This occurs in less 
than 0.5% of the retrievals. 

B LBLRTM BT - Reg. BT (Coldest Case) 

m LBLRTM BT - Reg. ET (Hottest Case) 

-1.01 I I * . I I I I I I I I . , , , , , , , , ] 

30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 46 47 40 49 50 
MAS Band 

Fig. 3. MAS band synthetic brightness temperature (BT) differ- 
ences between LBLRTM and fast regression transmittance models 
(the BT difference is zero if the column is not shown). 

3. Forward Transmittance Model 

An essential part of the physical retrieval is the 
accuracy of a fast regression transmittance model 
for the forward transfer radiance calculation.38 
Following the pressure layer optical depth algo- 
rithm,39 developed for AIRS flying on the EOS PM 
platform (the satellite will fly in a Sun-synchronous 
polar orbit ascending northward across the equator 
in the afternoon), a new MAS fast transmittance 
regression model has been developed for the current 
study at Cooperative Institute for Meteorological 
Satellite Studies (CIMSS). This transmittance 
model is similar to that used for the high-resolution 
infrared sounder (HIRS/3) and the advanced micro- 
wave sounder unit (AMSU).40>41 Figure 3 shows 
brightness temperature differences between LBL- 
RTM and fast regression forward models for MAS 
bands 30-50. The hottest and coldest rawinsonde 
observation (RAOB) profiles from a 1-yr RAOB 
dataset over North America are shown. As seen in 
Fig. 3, the differences are small (co.2 K) for all 
MAS bands except band 41 for the coldest case and 
bands 39-41 for the hottest case. The largest dis- 
crepancy is 0.53 K for band 40, suggesting that the 
fast regression transmittance model overestimates 
atmospheric absorption. In Fig. 4, showing results 
for driest and wettest RAOB profiles, brightness 
temperature differences for MAS bands 30-50 are 
less than 0.2 K. This illustrates that the fast re- 
gression model has a good agreement with LBL- 
RTM and is able to reproduce line-by-line 
calculations. One can expect that brightness tem- 
perature differences for MAS bands 30-50 from the 
two models are typically less than 0.2 K, which is 
near or below nominal MAS noise-equivalent tem- 
perature difference (NEAT). 

4. Band Sensitivity Study 

A physical algorithm for retrieving geophysical pa- 
rameters is based on the differences of observed and 
calculated sounding band brightness temperature. 
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- LBLRTM BT - Reg. ET (Driest Case) 

- LBLRTM BT - Reg. ET (Wettest Case) 

-1.0’ 

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
UAS Band 

Fig. 4. Same as Fig. 3, but for driest and wettest 
difference is zero if the column is not shown). 

profiles (the BT 

The brightness temperature differences of MAS 
bands 30-50 are used in the retrieval. Hence it is 
important to investigate the MAS bands’ sensitivity 
to variations of the geophysical parameters. The 
upper panel of Fig. 5 shows the MAS sensitivities to 
atmospheric temperature variations. The solid 
and the striped columns show brightness tempera- 
ture change with addition of 2 and 4 K, respectively, 
to the hottest temperature profile used in Fig. 3. 
CO, absorption is important -4.3 Frn (MAS bands 
34-36) and at wavelengths greater than -13 pm 
(MAS bands 48-50).2 Figure 5 shows that bands 
34-39 and 45-50 are the most sensitive bands to 
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Fig. 5. MAS band brightness temperature difference sensitivity 
to temperature (top panel) and water-vapor mixing ratio profile 
(bottom panel) variations. Hottest and wettest profiles of Figs. 3 
and 4 are used. 

- BTt.+4K-BTt. 
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Fig. 6. Same as Fig. 5, but to surface emissivity (top panel) and 
skin temperature (bottom panel) variations [the brightness 
perature (BT) difference is zero if the column is not shown]. 

atmospheric temperature variation. MAS water- 
vapor bands 40-42 also are sensitive to tempera- 
ture variation. This illustrates the strong 
dependence of water-vapor band radiance on atmo- 
spheric temperature. The solid and the striped 
columns in the bottom panel of Fig. 5 are with 20% 
and 40% water-vapor mixing ratio reduction, re- 
spectively, from the wettest profile of Fig. 4. As 
can be seen, bands 38-42 and 44-47 are sensitive 
to atmospheric water-vapor changes. MAS band 
48, which is used mainly for temperature retrieval, 
also has large sensitivity to atmospheric water va- 
por. It is demonstrated that all geophysical pa- 
rameters being retrieved make collective 
contributions to the brightness temperature of 
sounding bands. Thus a simultaneous retrieval 
approach may perform better than a sequential re- 
trieval approach (geophysical parameters are re- 
trieved separately), because the interdependence of 
atmospheric status with the coupled surface contri- 
bution is taken into account. 

Figure 6 shows MAS sensitivity to surface skin 
temperature and emissivity variations from the hot- 
test temperature profile used in Fig. 3. The original 
surface emissivity is assumed to be 1.0 (blackbody). 
Emissivity changes of 0.02 and 0.04 are shown. The 
changes of surface skin temperature are 2 and 4 K, 
respectively. It can be seen that bands 30-34 and 
42-46 (except ozone band 43) are the most sensitive 
to the change of surface properties. These spectral 
bands enable study of surface properties. In sum- 
mary, the sensitivity study of the MAS bands dem- 
onstrates that, although MAS is not a sounder 
instrument, it does have many thermal infrared 
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Table 2. List of Terrestrial Material Samples” Table 2. Continued 

Sample Sample 
No. Name Type of Material 

Sample Sample 
No. Name Type of Material 

basa1t.f Fresh rough surface 
basa1t.v Desert vanish coated rock 
ijo1ite.f Fresh rough surface 
ijo1ite.v Desert vanish coated rock 
rhyo1ite.f Fresh rough surface 
rhyo1ite.v Desert vanish coated rock 
crustose.10 Lichens coated rock 
crustose.65 Lichens coated rock 
basalt.h7 Igneous rock 
dunite.hl Igneous rock 
granite.hl Igneous rock 
syenite.hl Igneous rock 
greywack.ehl Sedimentary rock 
limeston.ehl Sedimentary rock 
limeston.eh2 Sedimentary rock 
limeston.eh3 Sedimentary rock 
sandton.ehl Sedimentary rock 
sandton.eh2 Sedimentary rock 
sandton.eh4 Sedimentary rock 
shale.h3 Sedimentary rock 
shale.h5 Sedimentary rock 
shale.h6 Sedimentary rock 
siltton.ehl Sedimentary rock 
siltton.eh2 Sedimentary rock 
gneiss.hla Metamorphic rock 
gneiss.h3a Metamorphic rock 
gneiss.h4 Metamorphic rock 
marble.h2 Metamorphic rock 
marble.h3 Metamorphic rock 
marble.h4 Metamorphic rock 
quartzit.ehl Metamorphic rock 
quartziteh4 Metamorphic rock 
quartzit.eh6 Metamorphic rock 
schist.h3a Metamorphic rock 
schist.h6a Metamorphic rock 
schisth7 Metamorphic rock 
slate.hla Metamorphic rock 
slate.h2a Metamorphic rock 
slate.h3 Metamorphic rock 
0127 Soil (Spodosols) 
0135 Soil (Entisols) 
0145 Soil (Ultisols) 
0211 Soil (Molisols) 
0219 Soil (Alfisols) 
0226 Soil (Inceptisols) 
0475 Soil (Vertisols) 
1530 Soil (Aridisols) 
4717 Soil (Oxisols) 
foliose. 1 Veg., lichens 
indiangr.ass Veg., green foliage 
redoak Veg., green foliage 
white.ine Veg., green foliage 
senbeech Veg., senescent foliage 
senpine Veg., senescent foliage 
senredoa.khl Veg., senescent foliage 
senryegr.ass Veg., senescent foliage 
oakbark. 1 Veg., tree bark 
pinebark. 1 Veg., tree bark 
ypoplarb.ark Veg. senescent foliage 
conifer .ous Veg. decomposing litter 
decidu.ous Veg. decomposing litter 
wood Veg. decomposing litter 
seawater Water 
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64 distwa.ter Water 
65 distice.OOg Ice 
66 distices.moo Ice 
67 seaice.lO.0g-r Ice 
68 seaicesm.oot Ice 
69 qtzwater.23 Suspended sediments 
70 qtzwater.64 Suspended sediments 
71 qtzwater. 7 Suspended sediments 
72 foam Water coatings 
73 oil15465 Water coatings 
74 oil34792 Water coatings 
75 oil39076 Water coatings 
76 oil42667 Water coatings 
77 soilfl.oat Water coatings 
78 qtzfloat Water coatings 
79 oil35473 Water coatings 
80 qtz.hem Quartz 

“Ref. 15. 

bands that contain information to be used for retriev- 
ing geophysical parameters. 

5. Band-Averaged Land-Surface Emissivity 

The band-averaged land-surface emissivity is defined 
as 

(17) 

where e(v) is the spectral response function of the 
MAS bandj, and ~j,l and uj,u are its lower and upper 
spectral boundaries. MAS band-averaged emissiv- 
ity data were calculated with Eq. (17) from published 
spectral reflectance data of 80 pure terrestrial mate- 
rial samples. These material samples include igne- 
ous, metamorphic, and sedimentary rocks, varnished 
rock surface, lichen-covered sandstone, soil samples, 
green foliage, senescent foliage, water, ice, and water 
surfaces with suspended quartz sediment or oil 
slicks. The sample numbers, names, and corre- 
sponding type of material are summarized in Table 2. 
A more detailed description of these surface emissiv- 
ity data can be found in Refs. 42 and 43. Figure 7 
shows the calculated band-averaged surface emissivi- 
ties in the MAS bands 30-32, 42, 45, 46, and 48. 
Analysis of these emissivity data clearly shows that 
there are strong variations not only for different ter- 
restrial materials (from vegetated surfaces to rock 
and sand) at given spectral positions but also for 
given materials at different spectral regions. For 
simplicity, in the two-step physical retrieval algo- 
rithm tested in this paper, only two surface emis- 
sivities are retrieved. These two emissivities are 



Fig. 7. Band-averaged emissivities of 80 terrestrial 
ples in MAS bands 30-32,42, 4546, and 48. 
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band-averaged emissivities for MAS shortwave (3-5 
km) and longwave (8-14.5pm) regions. 

6. Retrieval Results 

The two-step physical retrieval algorithm was tested 
with both simulated MAS radiances (from radio- 
sondes) and real MAS observations over Oklahoma 
during the SUCCESS campaign. For generating a 
first-guess profile, a regression-based retrieval was 
performed on the MAS datasets. The data compo- 
nents and the retrieval results are described in this 
section. 

A. First-Guess Regression Retrieval 

To develop a first-guess regression retrieval, 2512 
radiosonde profiles from the period of 2 March to 11 
April 1996 over the central United States were used. 
The radiosondes were divided into dependent (2094 
profiles) and independent (418 profiles) datasets. 
An eigenvector decomposition technique was applied 
to the dependent dataset to describe the temperature 
and water-vapor mixing ratio profiles. Two sets of 
empirical orthogonal functions were calculated; one 
for temperature and one for the natural logarithm of 
water-vapor mixing ratio. As described in Subsec- 
tion 2.B, each atmospheric profile can be expanded in 
terms of a few empirical orthogonal functions to cap- 
ture the atmospheric vertical structure information. 
The surface skin temperature was simulated for each 
radiosonde from surface air temperature plus a ran- 
dom number with variance 4 K and mean value equal 
to zero. The shortwave and the long-wave surface 
emissivities used in forward calculations were the 
MAS band-averaged emissivity data described in Sec- 
tion 5. The surface emissivities vary from 0.56 to 
0.99. 

The forward model discussed in Section 3 was used 
to create MAS simulated brightness temperatures for 
each radiosonde profile in the dependent and the in- 
dependent datasets. Random noise based on actual 
MAS data (variance 0.2 K and mean value equal to 
zero) was added to the MAS simulated dataset for 
better simulation of the MAS real observations. 

Regression analysis was applied to the dependent 
radiosonde-simulated MAS dataset to generate re- 
gression coefficients relating MAS bands 30-50 to 
atmospheric temperature and water-vapor profiles, 
surface skin temperature, and shortwave and long- 
wave emissivities. The regression coefficients were 
applied to the independent dataset to produce a high- 
quality profile of atmospheric state and surface prop- 
erties to facilitate physical solution of the RTE. 
Temperature and water-vapor profile statistical com- 
parisons are given in Fig. 8. The solid and the 
dashed curves represent the root-mean-square (rms) 
errors for physical (discussed in Subsection 6.B) and 
regression retrievals, respectively. The correspond- 
ing rms error (dotted-dashed curve) of the dependent 
mean profile is also plotted. As shown, the regres- 
sion retrieval first guess is a large improvement over 
the mean profile for both temperature and water va- 
por. 

B. Two-Step Physical Retrieval Test 

The two-step physical retrieval algorithm described 
in Section 2 is performed as follows: In the first step 
the Tikhonov regularization parameter is determined 
and applied to the first guess profile from the regres- 
sion analysis. The constraint matrix L is simply set 
to satisfy LrL = C-i, where C is a matrix of geophysi- 
cal parameter expected errors as its entries. The 
MAS instrument noise was evaluated with data col- 
lected over the Gulf of Mexico on 9 April 1996. A set 
of the expansion coefficients from Eq. (14) is com- 
puted as a Tikhonov parameter y varies. Then the 
Tikhonov solution that updates the first-guess profile 
is obtained. The retrieved residual of the MAS 
bands 30-50 is estimated at each step. The residual 
is defined to be the rms error of the noise-weighted 
difference between the observed brightness temper- 
ature and the brightness temperature calculated 
from the retrieved geophysical parameters through 
the RTE. This procedure is repeated with a varied 
y. When the retrieved residual is minimized, the 
first step is completed. The Tikohonov parameter y 
from the first step is referred to as the optimum pa- 
rameter in the sense of minimizing the retrieved re- 
sidual. If the minimum of retrieved residual is 
greater than the guess residual calculated from the 
regression analysis, the Tikhonov solution is rejected, 
and the first step retrieval is replaced with the re- 
gression profile with the optimum parameter set to 
an empirical value. 

In the second step, following the same procedure as 
in Ref. 17, the nonlinear Newtonian iteration algo- 
rithm is applied to the updated first-guess profile to 
produce the final two-step physical retrieval. Table 
3 lists the rms errors of the retrieval comparisons for 
a zero noise case. The second column represents the 
rms departure of the independent dataset profiles 
from the mean profile of the dependent dataset. The 
third and the forth columns are rms errors of the 
regression and two-step physical retrieved results 
compared with the MAS simulated data from the 
independent dataset profiles. The layer mean tem- 
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Table 3. Retrieval rms of Independent Dataset Simulated for 418 Table 4. Retrieval RMS of Independent Dataset Simulated for 418 

Profiles, with no Noise Added Profiles, Noise (mean = 0 and std = 0.2 K) Added 

Dep. Mean 
Profile 

Regression 
Rtvl. 

Physical 
Rtvl. 

Layer (hPa)” T W) T W) T (W 
1 (50-200) 4.46 1.04 0.89 
2(200-400) 3.32 1.49 1.42 
3(400-600) 5.62 1.26 1.14 
4(600-800) 6.96 1.25 1.18 
5 (800-1000) 8.23 1.84 1.64 

‘I’S (K) 10.59 0.62 0.49 
TPW (cm) 0.85 0.49 0.34 
SW E 0.060 0.024 0.020 
Lw E 0.0279 0.012 0.009 

aTs, surface skin temperature; TPW, total precipitable water 
vapor; SW E, surface emissivity in the shortwave region; Lw E, 
surface emissivity in the long-wave region. 

perature (LMT) 1 is the temperature profile averaged 
from 50 to 200 hPa. The other LMT’s are averaged 
from 200-400, 400-600, 600-800, and 800-1000 
hPa. The rms departure of the LMT from the de- 
pendent mean profile is from 4.46-8.23 K, whereas 
the rms error of the two-step physical retrieval is 1.64 
K or less. The total precipitable water vapor (TPW) 
rms is dramatically reduced from 0.85 to 0.34 cm. 
For surface properties the rms error of skin temper- 
ature is 0.49 K, and the rms error of surface emissiv- 
ity is 0.020 (0.009) for the shortwave (longwave) 
region. Figure 8 displays the information of Table 3 
in graphical form. Table 4 lists the same statistical 
comparisons as Table 3 but with random noise 0.2 K 
added into the simulated data. For a random NEAT 
of 0.2 K, the statistical results show that rms errors 
for LMT and TPW retrievals are equal to or less than 
1.73 K and 0.38 cm, respectively. The rms error of 
surface skin temperature is 0.58 K. And surface 
emissivity retrieval errors within the shortwave and 
the longwave regions are 0.022 and 0.011, respec- 
tively. Obviously, as noise increases the accuracy of 
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Fig. 8. Retrieved rms errors of temperature and water-vapor mix- 
ing ratio from the MAS synthetic brightness temperatures. 

Dep. Mean Regression Physical 
Profile Rtvl. Rtvl. 

Layer (hPa)” T WI T (W T WI 
1(50-200) 4.46 1.04 0.99 
2(200-400) 3.32 1.49 1.48 
3(400-600) 5.62 1.26 1.21 
4(600-800) 6.96 1.25 1.18 
5(800-1000) 8.23 1.84 1.73 

Ts WI 10.59 0.62 0.58 
TPW (cm) 0.85 0.49 0.38 
SW E 0.060 0.024 0.022 
Lw E 0.029 0.012 0.011 

aTs, surface skin temperature; TPW, total precipitable water 
vapor; SW E, surface emissivity in the shortwave region; Lw E, 
surface emissivity in the longwave region. 

the retrieval is degraded but still quite good. For 
noise of 0.2 K the rms error of the TPW is still -22% 
less than the regression retrieval results (0.38 cm 
versus 0.49 cm). Improvements of surface proper- 
ties are mitigated as noise increases. However, in 
Table 4 the physical retrieval rms error of the LMT 
and the surface emissivities is slightly better than 
the regression retrieval rms error. In summary sta- 
tistical analysis of retrieval rms errors show that the 
two-step physical retrieval algorithm is able to re- 
trieve geophysical parameters simultaneously with 
improved accuracy by use of MAS simulated data. 

C. Retrieval with Real MODIS Airborne Simulator Data 

The two-step physical retrieval algorithm described 
in Section 2 was applied to real MAS multispectral 
measurements from the SUCCESS campaign. 
Clear-sky radiances on 13 April 1996 were collected 
from 18:26 to 18:34 UTC by MAS on a NASA ER-2 
aircraft over the Cloud and Radiation Testbed site in 
Oklahoma. The MAS 50-m-resolution image con- 
tained 2991 lines with 716 pixels per line. The MAS 
data were averaged to a 10 X 10 field-of-view clear 
brightness temperature vector for each retrieval. 
The averaging process reduced the image size to 70 
pixels per line by 300 lines. The MAS 3-5-km band 
radiances were adjusted to remove surface-reflected 
solar contamination.44T45 For better representation 
of surface type in Oklahoma, some material samples 
such as minerals and rocks were excluded from the 
MAS band-averaged surface emissivity data in Sec- 
tion 5. A newly averaged two-emissivity dataset 
within the shortwave and the longwave regions was 
generated, which is a subset of MAS band-averaged 
emissivity data. This was randomly incorporated 
into the dependent and the independent datasets for 
the MAS simulated brightness temperature calcula- 
tion. A new set of regression coefficients that relate 
the geophysical parameters to the MAS simulated 
brightness temperature was generated from the de- 
pendent dataset. Surface pressure and sensor view- 
ing angle were added as additional predictors along 
with MAS band measurements, since surface pres- 
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292.59 304.61 316.63 1.04 1.83 2.61 

Fig. 9. Surface skin temperature (in kelvins) and total precipita- 
ble water-vapor (in centimeters) images retrieved from the MAS 
real observations. 

sure and sensor viewing angle variations must be 
accounted for in the real observations. Figure 9 
shows the retrieved surface skin temperature (left- 
hand panel) and total precipitable water-vapor 
(right-hand panel) images, respectively, from the 
two-step physical algorithm. The range of retrieved 
surface skin temperature is 292.6-316.6 K. The re- 
trieved TPW range is 1.04-2.61 cm. The retrieved 
surface emissivities within the shortwave and the 
long-wave regions are given in Fig. 10. The surface 
emissivity variation is from 0.93-1.00. For the in- 
direct verification of surface skin temperature the 
normalized difference vegetation index (NDVI) is dis- 
played in the right-hand panel of Fig. 11. The NDVI 
was determined on the basis of the relationship be- 

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 

0.93 0.96 0.99 0.94 0.97 1.00 

Fig. 10. Same as Fig. 9, but for retrieved surface emissivities 
within the shortwave and the longwave regions. 

0 10 20 30 40 60 60 70 0 10 20 30 40 60 60 70 

292.69 304.81 318.63 -0.13 0.26 0.84 

Fig. 11. Relationship between retrieved surface skin temperature 
and normalized difference vegetation index. 

tween measurements of MAS reflectance bands 2 
(0.66 km) and 7 (0.87 km): 

NDw = ref(7) - ref(2) 

ref(7) + ref(2) ’ 
(18) 

where ref(7) and ref(2) are reflectances of visible 
bands 7 and 2, respectively. The NDVI approxi- 
mately describes terrestrial material status: The 
higher NDVI value indicates vegetation, whereas 
lower NDVI values are typically nonvegetated sur- 
face.46747 As shown in Fig. 11, skin temperature is 
inversely correlated to NDVI, and higher (lower) skin 
temperature (left-hand panel) corresponds to lower 
(higher) NDVI .13 Figure 12 shows the correlation 
between surface skin temperature and the NDVI. 
The calculated correlation coefficient is -0.75 with 
21,229 retrieval points. It can be seen that there is 
a good negative correlation between the NDVI and 
retrieved surface skin temperature. A collocated 

320 

315 Correlation: -0.7509 

Samples: 21229 

300 

295 1 I 

-0.2 0.0 0.2 0.4 0.6 0.8 
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Fig. 12. Scatter diagram of retrieved surface skin temperature 
versus NDVI. 
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Fig. 13. Temperature and water-vapor mixing ratio retrieval 
comparisons with CLASS sounding profile at Cloud and Radiation 
Testbed site. 

CLASS sounding profile at 18 UTC was selected for 
atmospheric parameter comparison. The nearest 
(5 km) retrieved profile to the CLASS profile was 
chosen. The observation time difference was ap- 
proximately 30 min. Figure 13 illustrates the com- 
parison of temperature and water-vapor mixing ratio 
profiles. The dashed curve is the CLASS sounding 
profile and the solid and the dotted-dashed curves 
represent physical and regression solutions, respec- 
tively. Although the physical retrieval is not an im- 
provement over the regression temperature profile, 
the retrieval of the water-vapor mixing ratio profile 
from the two-step algorithm agrees better with the 
CLASS sounding than does the regression profile. 
The TPW bias error is reduced by -9% (1.45 versus 
1.56). The discrepancies between the CLASS 
sounding and retrieved profiles occur for the follow- 
ing reasons: (a) the MAS instrument with the lower 
vertical resolution capability has difficulty capturing 
sharp vertical gradients in the geophysical parame- 
ters, (b) the spatial resolution of the measurements 
differs (point measurement versus area average), (c) 
temporal discrepancies between the measurements 
(CLASS at 1800 UTC, MAS at 18:26-18:34 UTC), (d) 
the CLASS sounding errors are of the order of 0.5 K 
for temperature and 10% for humidity,48-so and (e) 
there is no bias correction to MAS radiances. Bias 
corrections account for absolute instrument measure- 
ment error, forward model error, and other process- 
ing errors. In addition, the current two-step 
physical retrieval algorithm is limited to retrieve only 
two surface emissivities (one within the shortwave 
region, the other within the long-wave region). 
They may not represent real emissivity spectral vari- 
ation, especially in the shortwave region when non- 
vegetated surfaces are viewed. However it is 
possible to retrieve more than two surface emissivi- 
ties if the reflected solar contribution term in Eq. (1) 
is included in the perturbation form of the RTE. 

This term is related to the surface properties and 
atmospheric conditions in the lower troposphere. 
Thus it includes information that can improve the 
accuracy of atmospheric parameter and surface prop- 
erty retrievals. Currently this investigation is un- 
der way. Preliminary testing shows that the 
retrieval accuracy of surface emissivities, especially 
within the shortwave region, is significantly im- 
proved when the reflected solar contribution term is 
included in Eq. (1). The test results will be pre- 
sented in a future paper. 

7. Conclusion 

In this paper we have presented a two-step physical 
algorithm for simultaneous retrieval of geophysical 
parameters including atmospheric temperature and 
water-vapor profiles, surface skin temperature, and 
shortwave and longwave emissivity from MAS radio- 
metric measurements. Previously, it was assumed 
that the surface is a blackbody or graybody for atmo- 
spheric sounding or that atmospheric properties are 
well known for surface property retrieval. As dem- 
onstrated in Ref. 13, the assumption of fixed surface 
emissivity degrades the accuracy of atmospheric pa- 
rameter retrieval in the troposphere. The advan- 
tage of the two-step physical algorithm presented 
here is to retrieve atmospheric parameters along 
with surface properties simultaneously in the cou- 
pled Earth-atmosphere system. Retrievals of geo- 
physical parameters with MAS simulated brightness 
temperatures calculated for a radiosonde profile 
dataset show that the accuracy of all retrieved pa- 
rameters is improved as compared with regression 
retrieval. When random noise of 0.2 K is added into 
the simulated data, retrieval performance is de- 
graded. However, RMS statistics demonstrate that 
the results retrieved with the two-step physical algo- 
rithm are still better than regression retrieval re- 
sults. The rms error (Table 4) of retrieved layer 
mean temperature is equal to or less than 1.73 K, the 
rms error of total precipitable water is 0.38 cm, a 22% 
reduction of rms as compared with rms of the regres- 
sion retrieval. Surface property (skin temperature, 
emissivity) retrieval is also improved. rms’s of 0.58 
K and 0.022 (0.011) are achieved for retrieved surface 
skin temperature and shortwave (longwave) emis- 
sivities, respectively. The experimental verification 
was also extended to real MAS observations from a 
NASA ER-2 aircraft over Oklahoma during the SUC- 
CESS campaign. The retrieved temperature and 
water-vapor mixing ratio profiles compared well with 
a CLASS sounding. The TPW retrieved from the 
two-step physical algorithm is 1.45 cm, 9% better 
than regression retrieval results. Surface proper- 
ties were indirectly verified with NDVI computed 
from MAS data. A high negative correlation (- 0.75) 
was found between retrieved skin temperature and 
NDVI. 

We are indebted to H. M. Woolf for his dedicated 
contributions to the MAS transmittance model devel- 
opment and providing all RAOB data used in this 
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